Algebraic Number Theory

Exercise Sheet 13

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	30.01.2025

Exercise 1. Let x be the real number such that $x^3 - 2 = 0$ and K the field $\mathbb{Q}(x)$. (1) Show that $X^3 - 2$ is irreducible in $\mathbb{Q}[X]$ and that $[K : \mathbb{Q}] = 3$. Find r_1 and r_2 for the field K.

(2) Let $z = a + bx + cx^2$ $(a, b, c \in \mathbb{Q})$ be an arbitrary element of K. Compute the trace of z over \mathbb{Q} .

(3) Let A be the ring of integers \mathcal{O}_K of K and let $B \subset K$ be the ring $\mathbb{Z}[x]$ generated in K by x. Show that $B \subset A$ and that B is a free abelian group with basis $\{1, x, x^2\}$.

(4) Let $z = a + bx + cx^2$ $(a, b, c \in \mathbb{Q})$ be an integer in K. Use the computation of the traces of z, zx, zx^2 to show that $6A \subset B$.

(5) Show that B/xB is a field with two elements and conclude that the ideal xB is maximal in B.

(6) Let $a \in A$. Show the following: if $N_{\mathbb{Q}}^{K}(a)$ is a prime number in \mathbb{Z} , then the principal ideal (a) is prime in A. Deduce that xA is a prime ideal in A.

(7) Using the equality $2 = x^3$, compute $[A/xA : \mathbb{Z}/2]$, and give another proof that xA is a prime ideal in A.

(8) Show that $xB = B \cap xA$ and that $B/xB \to A/xA$ is an isomorphism.

(9) Using (8), conclude that A = B + xA and then that A = B + 2A.

(10) Show that $3 = (x - 1)(x + 1)^3$ and that x - 1 is invertible in B. Proceed as in the questions (5)-(9) with x + 1 in place of x and 3 in place of 2, to show that A = B + (x + 1)A and then that A = B + 3A.

(11) Using (9) and (10), show that A = B + 6A. Deduce from (4) that A = B.

(12) Let d_K be the absolute discriminant of K. Compute that $|d_K| = 27 \cdot 4$.

(13) Compute the class group C(A).

Hint: Use the inequality from Korollar 9 (Chapter II) and estimate $(\frac{4}{\pi})^{r_2} \frac{n!}{n^n} \sqrt{|d_K|}$. (14) Deduce from (13) that A is principal.